The Influence of Acquisition Mode on the Dosimetric Performance of an Amorphous Silicon Electronic Portal Imaging Device
نویسندگان
چکیده
AIMS This study investigates the impact of cine acquisition mode on the dosimetric characteristics of a Varian aS500 amorphous silicon electronic portal imaging device (a-Si EPID). MATERIALS AND METHODS The performance of an a-Si EPID operated in cine mode was assessed and compared to its performance when operated in an integrated mode and dose measurements using an ionization chamber. This study was conducted at different photon energies and the EPID performance was assessed as function of the delivered dose, dose rate, multileaf collimator speed, field size, phantom thickness, and intensity-modulated radiation therapy fields. RESULTS The worst nonlinearity was observed at low monitor unit (MU) settings < 100 MU with the highest dose per frame. The nonlinearity of response at a low MU setting was attributed due to the loss of four cine images during each delivery. The EPID response with changing dose rate for 10 MU delivered had similar results to its performance in an integrated mode and ionization chamber. Despite the nonlinearity of response with low MU delivered, EPID performance operated in cine and integrated acquisition modes had comparable responses within 2%. CONCLUSIONS For EPID dosimetry application using cine mode, this study recommends the calibration of the EPID images to be undertaken at a large MU. There were no additional corrections that were required when the EPID operated in cine acquisition mode as compared to calibration in integrated mode.
منابع مشابه
A quality assurance program for an amorphous silicon electronic portal imaging device using in-house developed phantoms: a method development for dosimetry purposes
Background: Electronic portal imaging devices (EPIDs) play an important role in radiation therapy portal imaging, geometric and dosimetric verifications. A successful utilization of EPIDs for imaging and dosimetric purposes requires a reliable quality control process routine to be carried out regularly. In this study, two in-house phantoms were developed and analyzed for implementation in a qua...
متن کاملPretreatment quality control of single isocenter half- beam treatment planning technique using an amorphous silicon electronic portal-imaging device (EPID)
Introduction: Electronic portal imaging devices (EPIDs) are fundamentally used for instantaneous verification of the patient set‐up, block shape, and leaf positions during radiation therapy. In radiotherapy, situations arise in which an inclined PTV must be treated mutually with adjacent nodal regions. This methodology is most widely used for matching tangential/lateral breas...
متن کاملEPID in vivo Dosimetry
Introduction: The most modern radiotherapy devices are equipped with an Electronic Portal Imaging Device (EPID) system which is located on opposite side of the machine’s head. EPID system is often used to setting up the position verification during or between radiotherapy sessions. Material and Methods: Various types of dosimeters have been used to setting up ...
متن کاملDosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy.
Dosimetric properties of an amorphous silicon electronic portal imaging device (EPID) for verification of dynamic intensity modulated radiation therapy (IMRT) delivery were investigated. The EPID was utilized with continuous frame-averaging during the beam delivery. Properties studied included effect of buildup, dose linearity, field size response, sampling of rapid multileaf collimator (MLC) l...
متن کاملIn vivo dose verification using using an amorphous silicon flat panel-type imager (a-Si EPIDs)
Introduction: Electronic portal imaging devices (EPIDs) could be used to dose verification of radiotherapy treatment plans. In vivo dose verification is performed to reduce differences found between dose delivered to the patient and the prescribed dose. The aim of this study was to perform a fast and efficient technique for the verification of delivered dose to the patient usin...
متن کامل